
International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1621
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Accelerometer based Wireless Intuitive MIDI
Controller

Manjishta Kainth1, Sanket Kulkarni2, Forum Mehta3

1Undergraduate student, Electronics and Telecommunication Department,

DJSCE, Vile Parle (West), Mumbai 400056
manjishta.k@gmail.com

2Undergraduate student, Electronics and Telecommunication Department,

DJSCE, Vile Parle (West), Mumbai 400056
sanket26k@gmail.com

3Undergraduate student, Electronics and Telecommunication Department,

DJSCE, Vile Parle (West), Mumbai 400056
forummehta101@gmail.com

Abstract: The growing research and development in Music & Technology has put great emphasis on creative development and
deployment of innovative musical technologies which adds a completely new dimension to how we experience music. In recent years,
MIDI Controllers have been used extensively to control various parameters of a live performance or a studio production. The MIDI
Controllers available in market are generally employed with a number of sliders, knobs, buttons and may or may not include a piano-
keyboard. In this paper, we propose a MIDI controller based on an accelerometer to enhance intuitive motion based non-verbal
experience which can be used with or without company of the traditional button-slider MIDI controller. We implement this Controller
using a 3-D accelerometer module ADXL 330 & Arduino AT Mega 8 as a Human Interface Device to add the much needed portability
for system enhancement.

Keywords: Accelerometer, Human Interface Device, MIDI Controller, Music Technology.

—————————— ——————————

1. Introduction
With digital advancements, there is a voracious need to
revolutionize the music industry as well as interface
instruments with technology. For easy utility by music
enthusiasts such as remote controlling, a wireless project such
as this satisfies the urge to understand music note generation
from a technical point of view using MIDI notes.

MIDI is a digital language shared between electronic
instruments and the computer software to lead to ample music
possibilities. MIDI stands for Musical Instrument Digital
Interface and is specifically used to generate music in real-time
depending on the user’s need; and imagination. A MIDI note is
equivalent to a musical action such as strumming a guitar or
pressing a key on a piano. The notes connect the software to a
library of musical functions used by MIDI putting an entire
orchestra at our disposal. Safe to say, MIDI is a standard useful
in controlling any (and all) music devices available in the
market. MIDI notes can be generated on the software or on an
instrument termed as a MIDI Controller and played on the
sound card of the user’s personal computer.

2. Literature Review
2.1 Background
MIDI (Music Instrument Digital Interface) is an 8-bit binary
serial protocol that operates at 31,250 bits per second. MIDI
bytes are divided into two types: command bytes and data
bytes. Command bytes are always 128 or greater, or 0x80 to
0xFF in hexadecimal. Data bytes are always less than 127, or
0x00 to 0x7F in hex. Commands include extra functions such

as note on, note off, pitch bend on or off, and so forth. Data
bytes include things like the pitch of the note to play, the
velocity, (loudness of the note), amount of pitch bend and so
forth. MIDI data is usually notated in hexadecimal because
MIDI banks and instruments are grouped in groups of 16.

2.2 Message Structure

MIDI Messages comprise a STATUS byte followed by DATA
bytes. Messages are roughly divided into two main categories:
Channel and System. Channel messages contain a four bit
channel number encoded into the Status byte which addresses
the message specifically to one of the sixteen channels. System
messages are not encoded with channel numbers but are further
divided into three main types: System Common, System Real
Time and System Exclusive. System Real Time messages are
all single bytes and may be interleaved between any other
messages. Any Status byte except System Real Time may
terminate a System Exclusive Block.
For channel messages only, the Status byte may be omitted if it
would otherwise repeat the last Status byte sent. This is
commonly used to reduce the length of Note On/Note Off
sequences or Continuous Controller Movements, like for
sending accelerometer data continuously until a MIDI off is
transmitted.

2.3 Arduino
Arduino has been the brain for various projects for over the
past few years – all thanks to the user friendly features like
inexpensiveness, cross-platform compatibility, lucid
programming environment, open-source and extensible
software & hardware.

2.4 The Arduino MIDI library

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1622
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

This Arduino library allows I/O communications on the
Arduino serial ports. We can send and receive messages of
several kinds (such as System Exclusive, Real-time etc.) It will
help us interface Arduino with other MIDI devices.
MIDI.begin(MIDI_CHANNEL_OMNI): This initializes the
Midi Library. This parameter sets the library to listen to all
Midi Channels.
MIDI.begin(n) would set it to listen to Channel n only.
Here, n starts from channel 0 to channel 15.
MIDI.setHandleNoteOn(MyHandleNoteOn);
This acts like an import command. The Arduino Midi Library
uses 'Callbacks' i.e. when a Midi event occurs, the Library will
call a function to handle it. This command tells the Library to
call the 'MyHandleNoteOn' function when a 'Note On' Midi
event is detected. There are many callback functions in the
Library to handle the many types of Midi events (Clock, Pitch
Bend, Program Change, etc.). We use the MIDI.set command
to point to the functions we require.
Void MIDImessage(byte channel, byte pitch, byte velocity).
This is the function we created to be called when a Midi Note
On event is detected. This is the ‘essence’ of our program.
MIDI.Read() is the only function in the main loop of the
program. It just checks the input buffer for any received Midi
commands and passes them to the correct function.

2.5 Accelerometer

Accelerometer measure acceleration. It is extensively used to
easily calculate the inclination of an object with respect to the
ground. The accelerometer by itself uses very little current, so
it can be plugged into our Arduino board and run directly off of
the output from the digital output pins. To do this, we’ve used
three of the analog input pins as digital I/O pins, for power and
ground to the accelerometer, and for the self-test pin. We'll use
the other three analog inputs to read the accelerometer's analog
outputs.

ADXL 3xx Series sensors enables us to gather real time
physical control over musical parameters such as volume,
pitch, timbre.

Figure 1: Accelerometer pin-diagram

3. Implementation
The basic functioning of the prototype is as follows:

Figure 2: Basic Block Diagram

3.1 Interface accelerometer with Arduino
The physical connections of the accelerometer are done as
follows:

ADXL Ground - Arduino Ground

ADXL Power - Arduino V(ref) 3.3V

ADXL Xout - Analog Input 1

ADXL Yout - Analog Input 2

ADXL Zout - Analog Input 3

This can be achieved by defining each pin–

const int ap1 = A1;

const int ap2 = A2;

const int ap3 = A3;

const int groundpin = A4;

const int powerpin = A5;

& then assigning required pins as ground and power
appropriately.

pinMode(groundpin, OUTPUT);

pinMode(powerpin, OUTPUT);

digitalWrite(groundpin, LOW);

digitalWrite(powerpin, HIGH);

Now, to setup the Vref after connecting 3.3V to AREF we add

analogReference(EXTERNAL);

Thus, we have setup the accelerometer to be functional.

3.2 Analog input
The Arduino board contains a 6 channel 10-bit analog to digital
converter. This means that it will map input voltages between 0
and 5 volts into integer values between 0 and 1023. This yields
a resolution between readings of: 5 volts / 1024 units or, .0049
volts (4.9 mV) per unit. The input range and resolution is

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1623
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

changed using analogReference(). Thus, 3.3V maps to 1023 if
we have 3.3V Aref.

It takes about 100 microseconds (0.0001 s) to read an analog
input, so the maximum reading rate is about 10,000 times a
second.

The syntax for reading analog voltage at a pin is

analogRead(pin).

If the analog input pin is not connected to anything, the value
returned by analogRead() will fluctuate based on a number of
factors like the values of the other analog inputs or how close
is the board to other electro-magnetic changes.

sv1 = analogRead(ap1);

sv2 = analogRead(ap2);

sv3 = analogRead(ap3);

Here, we store the output integer between 0 and 1023 in 3
variables.

3.3 Mapping range for MIDI
Mapping function re-maps a number from one range to
another. That is, a value of from Low range 1 would get
mapped to Low Range 2, a value of from High Range 1 to
High Range 2, values in-between to values in-between, etc.

Does not constrain values to within the range, because out-of-
range values are sometimes intended and useful. The
constrain() function is used either before or after this function,
if limits to the ranges are desired. The syntax for mapping
range is:

map(value, Low Range 1, High Range 1, Low Range 1, High
Range 2).

The map() function uses integer math so will not generate
fractions, when the math might indicate that it should do so.
Fractional remainders are truncated, and are not rounded or
averaged. We map the range from 0 to 1023 to 0 to 127,
because MIDI data ranges valid only from 0 to 127.

ov(n) = map(sv(n), 0, 1023, 0, 127);

n=1,2,3

Since we can only send data bits now, we manually specify
note ON and note OFF messages.

byte noteON = 144;

We use a note with velocity 0 as a note OFF command.

3.4 MIDI message function
We define a function to actually send each message. It is called
every time MIDI notes need to be transmitted. The function
consists of 3 parameters namely command, and 2 data bytes.
The function looks like:

void MIDImessage(byte command, byte data1, byte data2)

{

 Serial.write(command);

 Serial.write(data1);

 Serial.write(data2);

}

Here, the command used can be noteON we defined earlier.
Data Byte 1 is used to convey the pitch of the MIDI note
transferred. Thus, for data1 = 0, C0 is transmitted. Data Byte 2
conveys the velocity of the MIDI note. Since velocity cannot
be greater than 100, all the values above 100 are assumed to be
100. Velocity is the loudness of the note currently being
played. It can also be used to control other parameters as filter
cut-off’s or pre-fader gain.

We can use 2 accelerometers simultaneous as pitch and
velocity controllers while calling this function as follows.

MIDImessage(noteON, ov1, ov2);

3.5 Serial to MIDI
The Serial to MIDI converter is a software solution to get our
computer’s serial port (or virtual serial port over USB) talking
with the MIDI software and hardware.

Normally, to use an Arduino or other micro-controller with our
MIDI software we had to build a MIDI-in and MIDI-out circuit
with a few parts and an opto-coupler. Easy enough, but then
we would typically need a MIDI to USB adaptor to connect it
to the computer. With the software solution, this is possible
with micro-controller like Arduino & a USB connector.
Hairless MIDI Serial Bridge is the easiest way to connect serial
devices (like Arduinos) to send and receive MIDI signals. It is
open-source software for Mac OS X, Windows & Linux. Once
Serial to MIDI is configured, it will

a. Take “MIDI” incoming serial data and forward it to the
desired MIDI port.

b. Take MIDI data coming from the chosen MIDI port and
forward it out of the serial port.

Since, an actual MIDI port needs a hardware MIDI connection,
we need to create a virtual MIDI port.

3.6 Virtual MIDI Port
A virtual MIDI port creates a fake freely nameable MIDI port.
It sends the data received from the Serial to MIDI converter to
the DAW.

Virtual MIDI port is an internal MIDI device for transferring
MIDI data between computer programs. Basically it acts an
"invisible cable" to connect a MIDI out port of an application
to any other application´s MIDI in port.

All MIDI data sent to the program´s output is channeled to the
receiving applications in real time.

We may connect up to 8 applications to LoopBe in port and up
to 8 applications to the out port, all sending and receiving at
the same time.

3.7 Digital Audio Workstation
A digital audio workstation (D.A.W.) is an electronic device or
computer software application for recording, editing and
producing audio files.

"DAW" can simply refer to the software itself, but
traditionally, a computer-based DAW has four basic
components: a computer, either a sound card or audio
interface, digital audio editor software, and at least one input
device for adding or modifying data. The computer acts as a
host for the sound card/audio interface, while the software
provides the interface and functionality for audio editing.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1624
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Computer-based DAWs have extensive recording, editing, and
playback capabilities (some even have video-related features).

As software systems, DAWs could be designed with any user
interface, but generally they are based on a multitrack tape
recorder metaphor, making it easier for recording engineers
and musicians already familiar with using tape recorders to
become familiar with the new systems. Therefore, computer-
based DAWs tend to have a standard layout that includes
transport controls (play, rewind, record, etc.), track controls
and a mixer, and a waveform display.

FL Studio supports up to 100 MIDI inputs and outputs. Thus,
one input port can be configured to the output of the MIDI
notes from the Arduino through the virtual MIDI port.

Thus, the MIDI data can be used to control pitch and/or
velocity of any parameters inside the DAW.

4. Conclusion
An approach is presented to study how motions produce
sounds in real-time based on MIDI notes and a wireless link.
The results are optimized solely for ease of accessibility. The
device is based on the concept of human machine interaction
technique as it utilizes the accelerometer values i.e., hand
gestures to define different effects applied to music as per
requirements extending the use of the device from a simple
studio production to a live-performance stage concert. The
advantage of the project lies in the versatility of operations as
the user can map effects with the accelerometer values
depending on the requirement. Gestures work as a form of non-
verbal communication to send instructions to D.A.W. FL
Studio as studied previously. Moreover Arduino libraries,
MIDI messages and functions were studied that aid in the
research.

The project holds a massive future scope in the music industry
as well as advancement in motion technology for its various
advantages such as portability, low cost and easy use for

having an edge over the primarily existing MIDI Controllers.
The project thrives on the convenience of hand gestures
transmitted over wireless connection replacing the hassle of
knobs and sliders.

References
[1] Arduino MIDI library v4.2, 2014

www.github.com/FortySevenEffects/arduino_midi_library
[2] Zohra Aziz Ali Manjiyani, Renju Thomas Jacob, Keerthan

Kumar R, Babu Varghese, School of Electronics, VIT
“Development of MEMS Based 3-Axis Accelerometer for
Hand Movement Monitoring”, February 2014.

[3] FL Studio, Image Line Software 1998-2015
www.image-line.com/flstudio

[4] Steven Campbell, James Cook University “An Ultrasonic
Gestural MIDI Controller”, Proceedings of Australian
Computer Music Conference, 2005.

Author Profile

Manjishta Kainth is currently an undergraduate student at
Dwarkadas J. Sanghvi College of Engineering, Mumbai. She belongs
to the Electronics and Telecommunication Department.

Sanket Kulkarni is currently an undergraduate student at Dwarkadas
J. Sanghvi College of Engineering, Mumbai. He belongs to the
Electronics and Telecommunication Department.

Forum Mehta is currently an undergraduate student at Dwarkadas J.
Sanghvi College of Engineering, Mumbai. She belongs to the
Electronics and Telecommunication Department.

IJSER

http://www.ijser.org/

	—————————— (——————————
	1. Introduction
	2. Literature Review
	2.1 Background
	2.2 Message Structure
	2.3 Arduino

